Math 2471 - Calculus 3  -  Fall 2019

Handouts

Surfaces

Some Solutions

HW 3


HW 7  #66  = ln(33)/10

HW 8  #70 = 2/5,  #72 = 8/15


​HW 9  #16 - pi,  18 = 4,  36 = 2 - 2/e,  38 = 17/20

Sample Tests and Solutions

ST1  ST1solns   T2 (from 2017)  Solns   ST3  ST3solns   Sample FInal  Solns


Homework

 

HW 1  pg. 806-7, #29, 31, 41, 43
​           pg. 814, #7, 9, 11, 13, 15, 17, 19, 21, 23 and 25.

 

HW 2  pg. 852, #27, 29,31, 33, 41, 43, 45 and 47.
           pg. 826-27, #7, 9, 11,31, 33, 35 and 43.

 

​HW 3 Show that the acceleration vector can be written as a linear

          combination of the tangent vector and normal vector for the following:

         (i)  r = <t^2 - 2 ln t, 4t, t^2 + 2 ln t>

​         (ii) r = a cos bt, a sin bt>  a and b are constant.

         pg.  882, #11, 13, 15 and 17.

​         pg. 870-1, #39, 41, 42, 51, 56, 64, 66, 67 and 68.

 

HW 4  pg. 893, #11, 13, 19, 23, 27, 28 and 29.

​           pg. 894, #69 and 71 (use the squeeze theorem).

​           pg. 904, # 11-27 odd, 29, 31, 33, 43, 45 and 49.


HW 5   pg.  935, #9, 17, 19, 21 and 23 (first point only).

            pg.  935, #11, 13, 14 and 15.

​            pg.  913, # 7, 9, 11, 19, 21 and 23.

​            pg.  925, #9, 11, 13, 17, 19 and 23.


HW 6   pg 948, #13, 15, 19, 23, and 31.

            pg. 970-1, # 5, 7, 9, 17, 19, 21.
​            pg. 981, #17, 19, 21, 23 and 25.


HW 7   pg. 981-2, # 17, 19, 27, 29, 39, 43, 47, 49, 51, 57, 59, 63 and 66.


HW 8   pg. 982-3, #69, 70, 72, and 73.

​           pg. 991, #15, 19, 23, 25 and 31.


​HW 9  pg. 1003-1005, 16, 18, 19, 25, 31, 35, 36, and 38.

          pg. 1019-20, # 17, 29, 31, 43, 45, 47 and 49.


​HW10  pg. 1058, #6, 7, 9, 13, 29, 31 and 33.
​           pg. 1084 #13, 14, 17
           pg. 1107-8 #9, 13, 27, 29, 33


HW11  pg. 1075, #15, 17, 25, 27, 29, 33, 35, 43 and 45.


HW 12  here  Ans.  3(i)  16 sqrt(3)/16  missing the sqrt(3).

Lectures

 

​Review - par. eqs

 

​Vector functions  1  2   3   4   5

Functions of Several Variables  6  7  8  9  10  11  12  13  14  15  16

Multiple Integration  17  18  19  20  21  22  23  23b  24  25

Vector Analysis 26  27  28  29  30  31  32  33  34  35